
Identifying 32-Bit Windows Platforms
Sometimes it is necessary to code something specific
to Windows NT or to Windows 95. In order to distin-
guish which platform you are running on, use
Win32Platform, a new SysUtils variable. This has values
of Ver_Platform_Win32_Windows for Windows 95,
Ver_Platform_Win32_NT for Windows NT and Ver_
Platform_Win32s for Win32s (not applicable, since Del-
phi 2 only generates code for NT and 95). See Listing 1.
The article on calling 16-bit code from Windows 95
32-bit executables is specific to Windows 95. In the
QTTHUNKU.PAS unit, home of several thunking utility
routines described in the article, the initialisation
section of the unit ensures that if a program using the
unit runs on NT, it immediately aborts with an
exception saying why.

Contributed by Brian Long

ShowModal
As a bit of a habit I (usually) like to create my modal
forms on the fly. If you have many screens to simply
create, ShowModal then free, I thought it would be nice
to have the little routine shown in Listing 2. To use it
simply call:
CreateShow(TFDistList, FDistList);

Contributed by Richard Smith, CompuServe
100446,327

Network Directory Exists
While working with NetWare LANs, I discovered that
the routine DirectoryExists from the FileCtrl unit does
not recognize the root directory of a network drive. On
any subdirectories DirectoryExists works fine. The
function in Listing 3 is a replacement for Directory-
Exists which also works on network drives. To keep it
simple, DirExists expects an absolute directory name
as the input parameter.

Contributed by Jaroslav Blaha, CompuServe
100015,1037

Execute And Wait
I needed to start an external application (DOS,
Windows, Batch, whatever) from my Delphi program
and then wait until this external application termi-
nated. The problem is to distinguish between the appli-
cation started from inside the Delphi program and any

other instances of the same application which might be
running in the background. The function WinExec (from
WinProcs) returns an undocumented word parameter.
This parameter is the handle of the module which
provided the executable code for the application. So, it
cannot be used directly for the search (eg by evaluation
of GetModuleUsage), because any other instances of this
application would have the same handle. The trick is
now to remember all the tasks which were running
before the execution of WinExec and to compare them
with all the tasks which are running afterwards. Any
new task with the same module handle as the started
application is the one we are looking for. See Listing 4.

Contributed by Jaroslav Blaha, CompuServe
100015,1037

Database Flushing
I found that if my program crashed, or maybe a laptop
battery got too low, shutting the system down, my
Paradox database would become corrupted. It would
say BLOB has been modified and the program would not
run anymore. Very bad news! After contacting Borland
at a cost of $2/minute they told me that the following

Tips
& Tricks

...
type
 EThunkError = class(Exception);
initialization
 if Win32Platform <> Ver_Platform_Win32_Windows then
 raise EThunkError.Create(
 ’Flat thunks only supported under Windows 95’);
end.

➤ Listing 1: How to spot a problematic platform

procedure TFMain.CreateShow(
 const TFClass : TFormClass; var Reference);
begin
 TForm(Reference) := TFClass.create(application);
 try
 TForm(Reference).showmodal;
 finally
 TForm(Reference).free;
 end;
end;

➤ Listing 2

uses SysUtils;
function DirExists(Dir : string) : boolean;
var fRec : TSearchRec;
begin
 if (Dir[Length(Dir)] = ’\’) then
 Dec(Dir[0]); { No ’\’ at the end }
 case Length(Dir) of
 0, 1 : Result := false; { Error }
 2 : Result := (Dir[2] = ’:’) and
 (DiskFree(Ord(Dir[1])-64) <>
 -1); { Root directory }
 else
 Result := (FindFirst(Dir, faDirectory, fRec) =
 0); { Directory }
 FindClose(fRec);
 end;
end;

➤ Listing 3

62 The Delphi Magazine Issue 12

statement should be put in the OnAfterPost event for
every TTable. This works very well and I have not had
any corruption since! Try it and save yourself some $...

uses DBIProcs;
procedure TF_Main.MasterTableAfterPost(
 DataSet: TDataset);
begin
 DBISaveChanges(MasterTable.Handle);
end;

Contributed by mike pijl, mike_pijl@mindlink.bc.ca

DefaultDrawDataCell
Sometimes you want to highlight certain rows of a
DBGrid or something else. At first I did it the hard way
by using the OnDrawDataCell and drawing it myself after
I had set the colours (Default drawing property to Off).
Then I found I can call the DefaultDrawDataCell method
(golden information!). See Listing 5.

Contributed by Mike Pijl, mike_pijl@mindlink.bc.ca

uses
 WinTypes, WinProcs, ToolHelp;
procedure ExecuteAndWait(Command : string);
var
 ModuleID : THandle;
 TaskEntry : TTaskEntry;
 TaskCount : integer;
 TaskList : array [1..100] of THandle;
 i : integer;
begin
 { Has to be initalized }
 TaskEntry.dwSize := SizeOf(TTaskEntry);
 TaskCount := 0;
 if TaskFirst(@TaskEntry) then
 { Save list of active tasks }
 repeat
 Inc(TaskCount);
 TaskList[TaskCount] := TaskEntry.hTask;
 until (not TaskNext(@TaskEntry));
 Command := Command + #0;
 { Execute }
 ModuleID := WinExec(@Command[1], SW_SHOWNOACTIVATE);
 if (ModuleID <= hInstance_Error) then
 { Error: add code to report it here }
 else if TaskFirst(@TaskEntry) then
 { Search for new task }
 repeat
 if (TaskEntry.hModule = ModuleID) then
 { Task uses same module }
 for i := 1 to TaskCount do
 { Search through list }
 if (TaskList[i] <> TaskEntry.hTask)
 then begin
 { Found }
 repeat
 { Wait for termination }
 Application.ProcessMessages;
 until (not IsTask(TaskEntry.hTask)) or
 Application.Terminated;
 exit;
 end;
 until (not TaskNext(@TaskEntry));
 end;

➤ Listing 4

procedure TF_Main.DetailGridDrawDataCell(Sender: TObject;
 const Rect: TRect; Field: TField; State: TGridDrawState);
begin
 If DetailTable.FieldByName(’Row Index’).AsInteger In
 [1,7,8,14] then
 with (Sender as TDBGrid).Canvas do begin
 If gdSelected in State Then
 Brush.Color:=clGreen {further hilite cell}
 Else
 Brush.Color:=clAqua; {highlight for weekends}
 End;
 DetailGrid.DefaultDrawDataCell(Rect,Field,State);
end;

➤ Listing 5

	Identifying 32-Bit Windows Platforms
	ShowModal
	Network Directory Exists
	Execute And Wait
	Database Rushing
	DefaultDrawDataCell

